Inicjatywa Doskonałości - Uczelnia Badawcza HR Excellence in Research
Kontakt ul. Chopina 12/18, 87-100 Toruń
tel.: +48 56 611 3410
e-mail: wmii@mat.umk.pl
zdjęcie nagłówkowe

Pełna lista publikacji naukowych

Prof. dr hab. DANIEL SIMSON

 

ur.: 18 stycznia 1942 roku
magisterium: 14 czerwca 1966 roku
doktorat: 10 czerwca 1970 roku
habilitacja: 12 czerwca 1974 roku
tytuł profesora: 26 marca 1987 roku

  1. Note on projective modules, Bull. Acad. Polon. Sci., Ser. Sci. Math., 17(1969), 355–359.
  2. On stable derived functors I, Bull. Acad. Polon. Sci., Ser.  Sci. Math., 18(1970), 57–64 (współautor A.Tyc).
  3. On stable derived functors II, Bull. Acad. Polon. Sci., Ser. Sci. Math., 18(1970), 635–639, (współautor A.Tyc)
  4. Stabilne funktory pochodne o współczynnikach w spektrum kompleksów, Rozprawa dok- torska, Instytut Matematyki UMK, Toruń, 10 czerwca 1970 roku.
  5. ℵ-flat and ℵ-projective modules, Bull. Acad. Polon. Sci., Ser. Sci. Math., 20(1972),  109–114.
  6. On the structure of flat modules, Bull. Acad. Polon. Sci., Ser. Sci. Math., 20(1972),  115–120.
  7. Some remarks on the ring of structural numbers, Demonstr. Math., 4(1972), 215–222.
  8. On the lattice of ideals of the ring of structural numbers, Demonstr. Math., 5(1973), 45–55 (współautor: R. Kiełpiński).
  9. Decomposability of elements in the ring of structural numbers, Demonstr. Math., 5(1973),57–68 (współautor: R. Kiełpiński).
  10. Connected sequences of stable derived functors and their applications, Dissertationes Math.,111(1974), 1–74 (współautor A.Tyc) – part of the PhD thesis [4].
  11. On projective resolutions of flat modules, Colloq. Math., 29(1974), 209–218.
  12. Stable derived functors of the second symmetric power functor, second exterior power functor and the Whidehead gamma functor, Colloq. Math., 32(1974), 57–64.
  13. A remark on projective resolutions of flat modules, Math. Annalen 209(1974), 181–182.
  14. On colimits of injectives in Grothendieck categories, Arkiv fur Mat., 12(1974), 161–165.
  15. Pure dimensions, Vestnik Mosk. Univ., 5(1974), 107–108.
  16. Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci., Ser. Sci. Math., 22(1974), 375–380.
  17. Serwantność i wymiary homologiczne w lokalnie skończenie przedstawialnych  kategoriach Grothendiecka,  Prace habilitacyjne, UMK Toruń, 1974, 1–47.
  18. On pure homological dimension, Bull. Acad. Polon. Sci., S´er. Sci. Math., 23(1975), 1–6. (współautor: R. Kiełpiński)
  19. Brown/s  theorem for cohomology theories on categories of chain complexes, Comment. Math., 18(1975), 285–296 (współautor: A.Tyc).
  20. On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math., 96(1977), 91–116 (-part of the habilitation thesis [17].
  21. Pure semisimple categories and rings of finite representation type, J. Algebra 48 (1977), 290–296.
  22. Exact sequences of pairs in commutative rings, Fund. Math., 99(1978),  113–121 (współ- autorzy: R. Kiełpiński oraz A. Tyc).
  23. On pure semi-simple Grothendieck categories I, Fund. Math., 100(1978), 211–222.
  24. On the category of commutative connected graded Hopf algebras over a perfect field, Fund. Math., 101(1978), 137–149 (współautor: A. Skowroński).
  25. Quivers of pure semisimple type, Bull. Polon. Acad. Sci. Math., 27(1979),  33–40 (współ- autor: G. Drozdowski).
  26. Remarks on posets of finite representation type,  Preprint  IM  UMK,  1978, poprawiona wersja znajduje  się na mojej stronie www w sieci (współautor: G. Drozdowski).
  27. On pure semi-simple Grothendieck  categories and the exchange property, Bull. Polon. Acad. Sci. Math., 27 (1979), 41–46 (współautor: Z. Leszczyński).
  28. Categories of representations of species, J. Pure Appl. Algebra 14 (1979), 101–114.
  29. Purity and generalized chain conditions, J. Pure Appl. Algebra 14 (1979), 297–305 (współ- autor: C. U. Jensen).
  30. On triangular matrix rings of finite of representation type, J. London Math. Soc. 20 (1979), 396–402 (współautor: Z. Leszczyński).
  31. On bimodules of finite representation type,  Preprint  No 79, Institute of Mathematics, N. Copernicus University, Toruń, 1979, 14 stron (współautor: P. Dowbor).
  32. Pure semisimple categories and rings of finite representation type. Corrigendum, J. Algebra 67(1980), 254–256.
  33. Right pure semisimple structures of liision, Proc. of the Eleventh Annual Iranian Mathe- matics Conference, University of Mashhad, Mashhad, Iran March 28 -31, 1980, 186–201.
  34. On pure semi-simple Grothendieck  categories II, Fund. Math. 110(1980), 107–116.
  35. Right pure semisimple hereditary rings, in Lecture Notes in Math. No. 832, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, (1980), pp. 573–578.
  36. Quasi-Artin species and rings of finite representation type, J. Algebra 63 (1980), 435–443 (współautor: P. Dowbor).
  37. Hereditaryartinian rings of finite representation type, in Lecture Notes in Math. No. 832, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, (1980), pp. 232–241 (współautor: P. Dowbor and C. M. Ringel).
  38. A characterization of hereditary rings of finite representation type, Bull. Amer. Math. Soc., 2(1980), 300–302 (współautor: P. Dowbor).
  39. Extensions of artinian rings by hereditary injective modules, Proc. ICRA III (Puebla, 1980), in Lecture Notes in Math. No. 903, Springer-Verlag,  Berlin-Heidelberg-New  York-Tokyo, (1981), pp. 315–330 (współautor: A. Skowroński).
  40. Indecomposable modules over semiperfect rings, J. Algebra 73(1981), 23–29 (współautor: S. Jøndrup).
  41. Partial Coxeter functors and right pure semisimple hereditary rings, J. Algebra 71(1981), 195–218.
  42. On the structure of locally finite pure semisimple Grothendieck  categories, Cahiers Topo- logie G´eom. Diff´erentielle Cat´egoriques, 23(1982), 397–405.
  43. On methods for the computation of indecomposable modules over artinian rings, in Proc. Conf. ”Ring Theory and Algebraic Geometry”, University of Chiba (Japan), July 1982, pp. 143–170.
  44. On the representation type of algebras and BOCS’s, in   Proc. Repr. Theory Conference, Shimoda (Japan), 2–5 November 1982, pp. 260–283.
  45. Indecomposable modules over one-sided serial local rings and right pure semisimple rings, Tsukuba J. Math. 7(1983), 87–103.
  46. „Representations of Partially Ordered  Sets, Vector Space Categories  and Socle Projective Modules”, Lecture Notes, Paderborn, July, 1983, 141 stron.
  47. Torsionless modules over 1-Gorenstein €-hereditary artinian rings, Comm. Algebra 12(1984), 899–936 (współautor: R. Bautista).
  48. A module theoretical approach to vector space categories, CISM Courses and Lectures No. 287, Springer-Verlag, Wien-New York, 1984, pp. 503–515.
  49. On vector space categories and differentiations of right peak rings, in Proc. ICRA  IV, Carleton University, Ottawa, 1984, Vol. 2., pp. 31.01–31.20.
  50. A diagrammatic characterization of schurian vector space PI-categories  of finite type, Bull. Polon. Acad. Sci. Math., 32(1984), 11–18 (współautorka:  B. Klemp).
  51. Right pure semisimple €-hereditary PI-rings, Rend. Sem. Univ. Padova 71(1984), 141–175.
  52. Special Schurian vector space categories and €-hereditary right QF-2 artinian rings, Com- mentari. Math. 25(1985), 135–147.
  53. Vector space categories, right peak rings and their socle projective  modules, J. Algebra 92(1985), 532 – 571.
  54. „On Representations of Partially Ordered Sets”, Lecture Notes, Paderborn, July, 1986, 188 stron.
  55. Socle reductions and socle projective modules, J. Algebra 103(1986), 18–68.
  56. On differentiation procedures for right peak rings and socle projective modules, Bull. Pol. Acad. Sci., Math., 35(1987), 279–288.
  57. Moduled categories and adjusted modules over traced rings, Dissertationes Math. 269(1990), pp. 1–67.
  58. Schurian sp-representation-finite right peak PI-rings and their indecomposable socle projective modules, J. Algebra 131(1990), 390–468 (współautorka: B. Klemp).
  59. On the Auslander-Reiten valued quiver of right peak rings, Fund. Math. 136(1990), 91–114 (współautorka: B. Klemp).
  60. Topics in Algebra, Part I: Proceedings ”Rings and Representations of Algebras”, Banach Center Publications, Vol. 26, IM PAN Warszawa, 1990. Editors: Stanisław Balcerzyk, Tadeusz Józefiak, Jan Krempa, Daniel Simson, Wolfgang Vogel.
  61. On pure semisimplicity and representation-finite piecewise prime rings, in ”Topics in Algebra, Part I: Rings and Representations of Algebras”, Banach Center Publications, Vol. 26, PWN Warszawa, 1990, pp. 327–339 (współautorka: B. Klemp).
  62. Representations of bounded stratified posets, coverings and socle projective modules, in ”Topics in Algebra, Part I: Rings and Representations of Algebras”, Banach Center Publications, Vol. 26, PWN Warszawa, 1990, pp. 499–533.
  63. On the representation type of stratified posets, C. R. Acad. Sci. Paris, 311(1990), 5–10.
  64. Peak reductions and waist reflection functors, Fund. Math. 137(1991), 115–144.
  65. A splitting theorem for multipeak path algebras, Fund. Math. 138(1991), 113–137.
  66. A narrow over-ring adjustment functor, J. Algebra 136(1991), 463–496.
  67. Artinian piecewise peak PI-rings of finite adjusted module type, Lecture Notes Universite de Sherbrooke, 1991, Rapport n◦  85, pp. 1–48.
  68. „On Representations of Partially Ordered  Sets of Tame Type”, Universit¨at Bielefeld, Son- derforshungsbereich 343 Diskrete ”Strukturen in der Mathematik”,  Erg¨anzungsreihe 91 – 004(1991), 1–101.
  69. Two-peak posets of finite prinjective type,  in Proc. Tsukuba Intern. Conf. Repr. Finite Dimensional Algebras, Canad. Math. Soc. Conf. Proc., 11(1991), pp. 287–298.
  70. Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329(1992), 733–753 (współautor: J. A. de la Pena).
  71. Right peak algebras of two-separate stratified posets, their Galois coverings and socle projective modules, Comm. Algebra 20(1992), 3541–3591.
  72. „Linear Representations of Partially Ordered  Sets and Vector Space Categories”,  Algebra, Logic and Applications, Vol. 4, Gordon & Breach Science Publisher,  1992, monografia, 520 stron.
  73. Posets  of finite prinjective  type  and a class of orders, J. Pure Appl. Algebra 90(1993), 77–103.
  74. On representation types of module subcategories and orders, Bull. Polon. Acad. Sci. Math., 41(1993), pp. 77–93.
  75. Varieties of poset representations and minimal posets of wild prinjective type,  in Proc. Intern. Conf. Repr. Alg. VI, Ottawa 1992, Canad. Math. Soc. Conf. Proc. 14(1993), pp. 245–284 (współautor: S. Kasjan).
  76. On right  pure semisimple  PI-rings, Bull. Polon. Acad. Sci. Math., 41(1993), 317–325, (współautor: J. L. Garcia).
  77. On bimodule matrix problems and artinian bipartite piecewise peak PI-rings of finite prinjective module type, Math. J. Okayama Univ. 35(1995), 89–138.
  78. On right pure semisimple hereditary rings and an Artin problem, J. Pure Appl. Algebra 104(1995), 313–332.
  79. Fully wild prinjective type of posets and their quadratic forms, J. Algebra 172(1995), 506–529, (współautor: S. Kasjan).
  80. A reduction functor, tameness and Tits form for a class of orders, J. Algebra 174(1995), 430–452.
  81. Triangles of modules and non-polynomial growth, C. R. Acad. Sci. Paris, 321(1995), 33–38.
  82. Representation embedding problems, categories of extensions and prinjective modules, in Proc. Intern. Conf. Repr. Alg. VII, Mexico 1994, Canad. Math. Soc. Conf. Proc. 18(1996), 601–639.
  83. Tame prinjective type and Tits form of two-peak posets I, J. Pure Appl. Algebra 106(1996), 307–330, (współautor: S. Kasjan).
  84. An Artin problem for liision ring extensions and the pure semisimplicity conjecture, I, Archiv der Math. 66(1996), 114–122.
  85. Socle projective representations of partially ordered sets and Tits quadratic forms with applications to lattices over orders, in Proc. Intern. Conf. on Abelian groups and Modules, Colorado Springs 1995, Lecture  Notes in Pure and Appl. Math., Vol. 182, 1996, Marcel- Dekker, 73–111.
  86. Roman Kiełpiński, A family of Z-forms of the rational symmetric n-th power functor, Bull.Polon. Acad. Sci. Math., 44(1996), 23–27, (praca napisana przez D. Simsona po śmierci R. Kiełpińskiego).
  87. Prinjective modules, propartite modules, representations of bocses and lattices over orders, J. Math. Soc. Japan 49(1997), 31–68.
  88. A peak reduction functor for socle projective representations, J. Algebra, 187(1997), 49–70 (współautor: S. Kasjan).
  89. Tame prinjective type and Tits form of two-peak posets II, J. Algebra 187(1997), 71–96 (współautor: S. Kasjan).
  90. A subbimodule reduction, a peak reduction functor and tame prinjective type,  Bull. Polon. Acad. Sci. Math., 45(1997) 89–107 (współautor: S. Kasjan).
  91. On rings whose flat modules form a Grothendieck category, Colloq. Math., 73(1997),  115–141 (współautor: J. L. Garcia)
  92. A class of potential counter-examples to the pure semisimplicity conjecture, in ”Advances in Algebra and Model Theory”, eds. M. Droste and R. G¨obel, Algebra, Logic and Applications Series, Vol. 9, Gordon & Breach Science Publishers, Amsterdam,  1997, pp. 345–373.
  93. Embeddings of Kronecker modules into the category of prinjective modules and the endo- morphism ring problem, Colloq. Math., 75(1998), 213–244 (współautor: R. G¨obel).
  94. On Tits form and prinjective representations of posets of finite prinjective type, Comm.Algebra 26(1998), 1613-1623 (współautorka: J. Kosakowska).
  95. Bipartite posets of finite prinjective type, J. Algebra 201(1998), 86–114 (współautor: H.-J. von Hohne).
  96. Dualities and pure semisimple rings, Lecture Notes in Pure and Appl. Math., Vol. 201, 1998, Marcel-Dekker, pp. 381–388.
  97. Representation types,  Tits reduced quadratic forms and orbit problems for lattices over orders, Contemporary Math., 229(1998), 307–342.
  98. Rigid families and endomorphism algebras of Kronecker modules, (współautor: R. G¨obel), Israel J. Math., 110(1999), 293–315.
  99. On the representation theory of artinian rings and Artin/s problems on liision ring exten- sions, Bull. Greek Math. Soc., 42(1999), 97–112.
  100. The Jacobson radical power series of module categories and the representation type, Bol. Soc. Mat. Mexicana, 5(1999), 223–236, (współautor: A. Skowroński).
  101. Three-partite subamalgams of tiled orders of finite lattice  type,  J. Pure Appl. Algebra 138(1999), 151–184.
  102. Tame three-partite subamalgams  of tiled  orders of polynomial growth, Colloq. Math., 81(1999), 237–262.
  103. A reduced Tits quadratic form and tameness of three-partite subamalgams of tiled orders, Trans. Amer. Math. Soc., 352(2000), 4843–4875.
  104. Cohen-Macaulay  modules over classical orders, Lecture Notes in Pure and Appl. Math., Vol. 210, 2000, Marcel-Dekker,  345–382.
  105. Posets of infinite prinjective type and embeddings of Kronecker modules into the category of prinjective  peak I -spaces, Comm. Algebra 28(2000),  151–181 (współautorka: J. Kosa- kowska).
  106. An Artin problem for liision ring extensions and the pure semisimplicity conjecture, II, J. Algebra 227(2000), 670–705.
  107. The Auslander-Reiten quiver, modules over artinian rings, pure-semisimplicity and Artin/s problems on liision ring extensions, Proc. Symp. Ring Theory and Representation Theory (4–7 October 1999, Yamaguchi  University, Japan) 32(2000), 85–106.
  108. On small right pure semisimple rings and their Auslander-Reiten quiver, Comm. Algebra 29(2001), 2991–3009
  109. Indecomposable decompositions  of pure-injective objects and the pure semisimplicity, J. Algebra 244(2001), 478–491 (współautor: P. A. Guil).
  110. Coalgebras, comodules, pseudocompact algebras and tame comodule type, Colloq. Math., 90(2001), 101–150.
  111. Tits quadratic form, Kluwer Encycl. Math., Suppl., 3(2002), 407–409.
  112. On coalgebras of tame comodule type,  in: „Represenataions  of Algebras”, Proc. ICRA- IX, (Eds: D. Happel and Y.B. Zhang), Beijing Normal University Press, 2002, Vol. II, pp. 450–486.
  113. Locally Dynkin quivers and hereditary coalgebras whose left comodules are direct sums of finite dimensional comodules, Comm. Algebra 30(2002), 455–476 (współautor: Sebastian Nowak).
  114. An endomorphism algebra realisation problem and Kronecker embeddings for algebras of infinite representation type, J. Pure Appl. Algebra 172(2002), 293–303.
  115. Structure theorems for pure semisimple Grothendieck locally PI-categories, Comm. Algebra 30(2002), 1153–1197 (współautor: J. L. Garcia).
  116. On local right  pure semisimple rings of length two  or three, Osaka J. Math., 39(2002), 985–1003.
  117. Pure-periodic modules and a structure of pure-projective resolutions, Pacific Journal Math., 207(2002), 235-256.
  118. Chain categories of modules and subprojective representations of posets over uniserial algebras, Rocky Mountain J. Math., 32(2002), 1627–1650.
  119. Jerzy Łoś and a history of abelian groups in Poland, Rocky Mountain J. Math., 32(2002), 1245–1255.
  120. On large indecomposable modules and right pure semisimple rings, Algebra and Discrete Math., 2(2003), 93–117.
  121. Path coalgebras of quivers with relations and a tame-wild dichotomy problem for coalgebras, Lecture Notes in Pure and Appl. Math., Marcel-Dekker, 236(2004), pp. 465–492.
  122. Endo-wild represenatation  type  and generic represenatations  of finite posets, Pacific J. Math., 219(2005), 1-26 (współautor: D. M. Arnold).
  123. On Corner type Endo-Wild algebras, J. Pure Appl. Algebra 202(2005), 118–132.
  124. Hereditary coalgebras and representations of species, J. Algebra 293(2005), 457–505 (współautorka J. Kosakowska).
  125. „Elements  of the Representation Theory of Associative Algebras”, Volume 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York, 2006 (współautorzy:  I. Assem oraz A. Skowroński). monografia, 457 stron.
  126. Represenatations of finite partially ordered sets over commutative uniserial rings, J. Pure Appl. Algebra 205(2006), 640-659 (współautor: D. M. Arnold).
  127. Irreducible morphisms, the Gabriel valued quiver and colocalisations for coalgebras, Inter- nat. J. Math. Mathematical  Sciences 72(2006), 1-16.
  128. „Elements of the Representation Theory of Associative Algebras”, Volume 2. Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Student Texts 71, Cambridge Univ. Press, Cambridge-New   York, 2007 (współautor: A. Skowroński), monografia, 308 stron.
  129. „Elements of the Representation Theory of Associative Algebras”, Volume 3. Representation- Infinite  Tilted Algebras, London Math. Soc. Student  Texts 72, Cambridge Univ. Press, Cambridge-New York, 2007 (współautor: A. Skowroński),  monografia, 456 stron.
  130. Representation types of the category of subprojective representations of a finite poset over K [t]/(tm) and a solution of a Birkhoff type problem, J. Algebra 311(2007), 1–30.
  131. Localising embeddings of comodule categories with applications to tame and Euler coalge- bras, J. Algebra 312(2007), 455–494.
  132. Hom-computable  coalgebras, a composition factors matix and the Euler bilinear form of an Euler coalgebra, J. Algebra 315(2007), 42–75.
  133. Path coalgebras of profinite bound quivers, cotensor coalgebras of bound  species and locally nilpotent representations, Colloq. Math., 109(2007), 307–343.
  134. Representations of finite posets over commutative discrete valuation rings, Comm. Algebra 35(2007), 3128–3144 (współautor: D. M. Arnold).
  135. Flat comodules and perfect coalgebras, Comm. Algebra 35(2007), 3164–3194 (współautor: J. Cuadra).
  136. Minor degenerations of the full matrix algebra over a field, J. Math. Soc. Japan, 59(2007), 763–795 (współautorzy: H. Fujita, Y. Sakai).
  137. On Frobenius full matrix  algebras with  structure systems, Algebra and Discrete Math., 1(2007), 13–28 (współautorzy: H. Fujita oraz Y. Sakai).
  138. Hereditary stable tubes in module categories, Algebra and Discrete Math., 3(2007), 1–27 (współautor: A. Skowroński).
  139. Tame-wild dichotomy for coalgebras, J. London Math. Soc., 78(2008), 783–797.
  140. An algorithmic solution of a Birkhoff type  problem, Fund. Inform.,  83(2008),  389–410, współautor: M. Wojewódzki.
  141. The Gabriel-Roiter measure for right  pure semisimple rings, Algebras and Repr. Theory 11(2008), 407–424 (współautor: N. V. Dung).
  142. Representation-directed  incidence coalgebras of intervally finite posets and the tame-wild dichotomy, Comm. Algebra 36(2008), 2764–2784.
  143. Bipartite  coalgebras  and a reduction functor for coradical square complete coalgebras, Colloq. Math, 112(2008), 89–129 (współautorka: J. Kosakowska).
  144. Cotilted coalgebras and tame comodule type, Arab. J. Sci. Eng., 33(2008), 421–445.
  145. Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories, Colloq. Math., 115(2009), 259–295.
  146. Tame comodule type, Roiter bocses, and a geometry context for computable coalgebras, Ukrain. Math. J. 6(2009), 810–833.
  147. Integral bilinear forms, Coxeter transformations and Coxeter polynomials of finite posets, Linear Algebra Appl., 433(2010), 699–717, doi: 10.1016/j.laa. 2010.03.04.
  148. P -critical integral quadratic forms and positive  forms. An algorithmic approach, Linear Algebra Appl. 433(2010),  1873–1888, doi: 10.1016/j.laa. 2010.06.052 (współautorzy:  G. Marczak oraz A. Polak).
  149. Coxeter transformation and inverses of Cartan matrices for coalgebras (współautor: W. Chin), J. Algebra 324(2010), 2223–2248, doi: 10.1016/j.jalgebra.2010.06.029.
  150. Coalgebras of tame comodule type, comodule categories, and a tame-wild dichotomy pro- blem, Proc.  Conf. „Representation  Theory and Related Topics”  (ICRA-XIV  Tokyo), (eds: A. Skowroński and K. Yamagata),  Series of Congress Reports, European Math. Soc. Publishing House, Zu¨rich, 2011, pp. 561–660.
  151. The Euler characteristic and Euler defect for comodules over Euler coalgebras, J. K-Theory, 7(2011), 91–113, doi: 10.1017/is009010019jkt081.
  152. Mesh geometries of root orbits of integral quadratic forms, J. Pure Appl. Algebra 215(2011), 13–34, doi: 10.1016/j.jpaa. 2010.02.029.
  153. Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots, Fund. Inform. 109(2011), 425–462, doi: 10.3233/FI-2011-603.
  154. Programming in PYTHON and an algorithmic description of positive wandering on one-peak posets, Sixth European Conference on Combinatorics, Graphs Theory and Applications, EuroComb2011, Budapest, August 2011, Electronic Notes in Discrete Mathematics 38(2011), 419–424. doi: 10.1016.endm.2011.09.068 (współautor: M. Gąsiorek).
  155. Symbolic and numerical computation in determining P -critical unit forms and Tits  P – critical posets, Sixth European Conference on Combinatorics, Graphs Theory and Applications, EuroComb2011, Budapest, August 2011, Electronic Notes in Discrete Mathematics 38(2011), 723-730, doi: 10.1016.endm.2011.10.021 (współautorka: A. Polak).
  156. Experiences in computing mesh root systems for Dynkin diagrams using Maple and C++, 13th Intern.  Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC11, Timisoara, September 2011, IEEE Computer Society, IEEE CPS, pp. 83–86, Washington-Tokyo,  2011, doi: 10.1109/SYNASC.2011.41 (współautor: M. Felisiak).
  157. One-peak posets with positive Tits quadratic form, their mesh translation quivers of roots, and programming in Maple and Python, Linear Algebra Appl., 436(2012), 2240–2272, doi: 10.1016.laa. 2011.10.045 (współautor: M. Gąsiorek).
  158. A computation of positive one-peak posets that are Tits-sincere, Colloq. Math. 127(2012), 83–103 (współautor: M. Gąsiorek). DOI: 10.4064/cm127-1-6.
  159. On computing mesh root systems and the isotropy group for simply-laced Dynkin dia- grams, Proc. 14th Intern. Symposium on Symbolic and Numeric Algorithms for Scienti- fic Computing, SYNASC12, Timisoara, 2012, IEEE Post-Conference  Proceedings, IEEE CPS Computer Society, IEEE CPS, Tokyo, 2012, pp. 91-97, Washington-Tokyo,  2012, doi: 10.1109/SYNASC.2012.16 (współautor: M. Felisiak).
  160. On Coxeter spectral study of posets and a digraph isomorphism problem, Proc. 14th Intern. Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC12, Timisoara, 2012, IEEE Post-Conference Proceedings, IEEE CPS Computer Society, IEEE CPS, Tokyo, 2012, pp. 369-375, Washington-Tokyo,  2012, doi: 10.1109/SYNASC.2012.56 (współautorzy: Marcin Gąsiorek oraz Katarzyna Zając).
  161. On Coxeter spectral study of edge-bipartite graphs in relation with Dynkin diagrams, 11-th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, Munich, Germany, May 29-31, 2012, CTW 2012, pp. 125-129, doi: 10.1109.2012.16 (współautor: M. Felisiak).
  162. A  Coxeter-Gram classification of positive  simply-laced edge-bipartite graphs, SIAM J. Discrete Math. 27( 2013), 827–854, doi: 10.113710843721.
  163. Algorithms determining matrix morsifications, Coxeter polynomials and mesh geometries of roots for Dynkin diagrams, Fund. Inform., 123(2013), 447-490, doi: 10.3233I-2013-820.
  164. On combinatorial algorithms computing matrix morsifications and mesh root systems for the Dynkin diagram An, Discrete Math. 313(2013), 1358-1367, doi: 10.1016/j.disc.2013.02.003 (współautor: M. Felisiak).
  165. A framework for Coxeter spectral classification of finite posets and their mesh geometries of roots, Intern. J. Math. Mathematical  Sciences, Volume 2013, Article ID 743734, 22 pages, http.//dx.doi.org/10.1155/2013/743734 (współautorka: Katarzyna Zając).
  166. A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits, Fund. Inform. 124(2013), 309-338, doi: 10.3233/FI-2013-836.
  167. Toroidal algorithms for mesh geometries of root orbits of the Dynkin diagram D4, Fund. Inform.  124(2013), 339-364, doi: 10.3233I-2013-837.
  168. On Coxeter spectral study of finite posets using computer algebra tools, Electronic Notes in Discrete Mathematics 40(2013), 121-127, doi: 10.1016/endm.2013.05.023 (współautorzy: Marcin Ga¸siorek oraz Katarzyna Zając).
  169. On Coxeter spectral classification of P -critical edge-bipartite graphs of Euclidean type A- n, Electronic Notes in Discrete Mathematics  40(2013), 311-316, doi: 10.1016/j.disc.2013.02.055 (współautorka: A. Polak).
  170. An inflation algorithm and a toroidal mesh algorithm for edge-bipartite graphs, Electronic Notes in Discrete Mathematics  40(2013), 337-383, doi: 10.1016/j.disc.2013.02.066 (współ- autorka:  K. Zając).
  171. Algorithms computing O(n, Z)-orbits of P -critical edge-bipartite graphs and P -critical unit forms by using Maple and C#, Algebra and Discrete Math. 16(2013), No. 2, 242-286 (współ- autorka:  A. Polak).
  172. A classification of positive  posets using isotropy groups of Dynkin diagrams, EuroComb 2013, in:: Centro di Riserca Matematica Series (Edicioni della Normale, Scuola Normale Superiore Pisa), Vol 16, 2013, pp. 599–605, doi: 10.100778-88-7642-475-5 95 (współautor: Marcin Gąsiorek).
  173. Numeric and mesh algorithms for the Coxeter spectral study of positive edge-bipartite graphs and their isotropy groups, J. Comp. Appl. Mathematics,  259(2014), 815-827, doi:10.1016.cam.2013.07.013 (ukazała  się online 31.07.2013), (współautorzy: Rafał Bocian oraz Mariusz Felisiak).
  174. Coxet er spectral classification of almost T P -critical one-peak posets using symbolic and numeric computations, Linear Algebra Appl. 445(2014), 223-255, doi: 10.1016.laa. 2013.12.018 (współautorka: A. Polak),
  175. On Coxeter type classification of loop-free edge-bipartite graphs and matrix morsifications, SYNASC 2013, Timisoara,  2013, IEEE Post-Conference Proceedings, IEEE CPS Computer Society, IEEE CPS, Tokyo, 2014, pp. 115-118, doi: 10.1109/SYNASC.2013.22 (współautorzy:  Rafał Bocian oraz Mariusz Felisiak).
  176. On computing non-negative loop-free edge-bipartite graphs, SYNASC 2013, Timisoara, 2013, IEEE Post-Conference Proceedings, IEEE CPS Computer Society, IEEE CPS, Tokyo, 2014, pp.68-75 doi: 10.1109/SYNASC.2013.16 (współautorzy: G. Marczak oraz K. Zając).
  177. Algorithmic experiences in Coxeter spectral study of P -critical edge-bipartite graphs and posets, SYNASC 2013, Timisoara, 2013, IEEE Post-Conference  Proceedings, IEEE CPS Computer Society, IEEE CPS, Tokyo, 2014, pp. 375-382, doi: 10.1109/SYNASC.2013.56 (współautorka: A. Polak).
  178. Algorithmic computation of principal posets using Maple and Python, Algebra and Discrete Math. 17(2014), 33-69 (współautorzy: Marcin Gąsiorek oraz Katarzyna Zając).
  179. On corank two edge-bipartite graphs and simply extended Euclidean diagrams, SYNASC 2014, Timisoara, 2014, IEEE Post-Conference Proceedings, IEEE CPS Computer Society, IEEE CPS, Tokyo, 2014, pp. 66-73, doi: 10.1109/SYNASC.2014.17, (współautorzy:  M. Gąsiorek oraz K. Zając).
  180. Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators, J. Algebra 424 (2015), 254-293, doi: 10.1016/j.jalgebra.2014.11.008.
  181. Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, I. Mesh root systems, Fund. Inform. 139 (2015),  153-184, doi: 10.3233I-2015-1230 (współautor: S. Kasjan).
  182. Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, II. Application to Coxeter spectral analysis, Fund. Inform. 129 (2015), 185-209, doi: 10.3233I-2015.1231 (współautor: S. Kasjan).
  183. Algorithms for isotropy groups of Cox-regular edge-bipartite graphs, Fund. Inform. 129 (2015), 249-275, doi: 10.3233I-2015-1234 (współautor: S. Kasjan).
  184. Applications of matrix morsifications to Coxeter spectral study of loop free edge-bipartite graphs, Discrete Appl. Math. 192(2015), 49-64, doi: 10.1016.dam.2014.05.002 (współautor: M. Felisiak).
  185. Structure and a Coxeter-Dynkin type classification of corank two non-negative posets, Linear Algebra Appl. 469(2015), 76-113, 10.1016.laa.2014.11.003 (współautorzy: M. Ga¸siorek oraz K. Zając).
  186. On Coxeter type  study of non-negative  posets  using matrix  morsifications and isotropy groups of Dynkin and Euclidean diagrams, Europ. J. Comb. 48(2015),  127-142, doi:10.1016.ejc.2015.02.15 (współautorzy: M. Ga¸siorek oraz K. Zając).
  187. Incidence coalgebras of interval finite posets of tame comodule type, Colloq. Math. 141(2015), 261-295, DOI:10.4064/cm141-2-10  (współautor: Z. Leszczyński).
  188. Symbolic algorithms computing Gram congruences in the Coxeter spectral classification of edge-bipartite graphs, I. A Gram classification, Fund. Inform.   145(2016), 19-48, doi: 10.3233I-2016-1345.
  189. Symbolic algorithms computing Gram congruences in the Coxeter spectral classification of edge-bipartite graphs, II. Isotropy mini-groups, Fund. Inform. 145(2016),  49-80, doi: 10.3233I-2016-1346.
  190. A Gram classification of non-negative corank-two loop-free edge-bipartite graphs, Linear Algebra Appl. 500(2016), 88-118, doi:10.1016.laa.2016.03.007 10.1016.laa.2016.03.007 (współ- autorzy: M. Gąsiorek oraz K. Zając).
  191. Flat complexes, pure periodicity and pure acyclic complexes, J. Algebra, 480 (2017), 298-308, doi.org/10.1016.jalgebra.2017.02.013.
  192. Inflation algorithm for loop-free non-negative edge-bipartite graphs of corank at least two, Linear Algebra Appl. 524(2017), 109-152, 10.1016.laa.2017.02.021 (współautorka: K. Zając).
  193. Inflation algorithm for Cox-regular positive edge-bipartite graphs with loops Fund. Inform. 153(2017), 367-398, doi: 10.3233I-2017-1545 (współautorzy: B. Makuracki i B. Zyglarski).
  194. Representation-finite Birkhoff type problems for nilpotent linear operators, J. Pure Appl. Algebra 222(2018), 2181-2198, doi: 10.1016/j.jpaa.2017.09.005.
  195. A Coxeter spectral classification of positive edge-bipartite graphs I. Dynkin types Bn, Cn, F4, G2, E6, E7 and E8, Linear Algebra Appl. 557(2018), 105-133, 10.1016.laa.2018.07.013.
  196. A Gram classification of principal Cox-regular edge-bipartite graphs via inflation algorithm Discrete Appl. Math. 253(2019), 25-36, doi: 10.1016.dam-2017.10.033 (współautor: B. Makuracki).
  197. Symbolic computations of strong Gram congruences for Cox-regular positive edge-bipartite graphs with loops, Linear Algebra Appl. 573(2019), 90-143, 10.1016.laa.2019.02.023.
  198. A computational technique in Coxeter spectral study of symmetrizable integer Cartan matrices, Linear Algebra Appl. 586(2020), 190-238, 10.1016.laa.2019.10.15.
  199. On mesh geometries of root Coxeter orbits and mesh algorithms for corank two edge- bipartite signed graphs, Linear Algebra Appl. 610(2021), 698-765, 10.1016.laa.2020.10.016, (współautorka: K. Zając).
  200. A Coxeter spectral classification of positive edge-bipartite graphs II. Dynkin type Dn, Linear Algebra Appl. 612(2021), 223-272, 10.1016.laa.2020.11.001.
  201. Applications of mesh algorithms and self-dual mesh geometries of root Coxeter orbits to a Horn-Sergeichuk type problem, Linear Algebra Appl. 632(2022), 79-152, 10.1016.laa.2021.09.05, (współautorka: K. Zając).
  202. Weyl orbits of matrix morsifications and a Coxeter spectral classification of positive signed graphs and quasi-Cartan matrices of Dynkin type An, preprint 2021. wysłana w maju 2021.
  203. Coxeter spectral classification theorems and algorithms for strong Gram congruences of loop-free edge-bipartite graphs of Dynkin types ADE, Applied Mathematics and Computation, wysłana do publikacji w 2022.